Fractional Iteration in the Disk Algebra: Prime Ends and Composition Operators
نویسنده
چکیده
In this paper we characterize the semigroups of analytic functions in the unit disk which lead to semigroups of operators in the disk algebra. These characterizations involve analytic as well as geometric aspects of the iterates and they are strongly related to the classical theorem of Carathéodory about local connection and boundary behaviour of univalent functions.
منابع مشابه
The approximate solutions of Fredholm integral equations on Cantor sets within local fractional operators
In this paper, we apply the local fractional Adomian decomposition and variational iteration methods to obtain the analytic approximate solutions of Fredholm integral equations of the second kind within local fractional derivative operators. The iteration procedure is based on local fractional derivative. The obtained results reveal that the proposed methods are very efficient and simple tools ...
متن کاملThe analytical solutions for Volterra integro-differential equations within Local fractional operators by Yang-Laplace transform
In this paper, we apply the local fractional Laplace transform method (or Yang-Laplace transform) on Volterra integro-differential equations of the second kind within the local fractional integral operators to obtain the analytical approximate solutions. The iteration procedure is based on local fractional derivative operators. This approach provides us with a convenient way to find a solution ...
متن کاملBilateral composition operators on vector-valued Hardy spaces
Let $T$ be a bounded operator on the Banach space $X$ and $ph$ be an analytic self-map of the unit disk $Bbb{D}$. We investigate some operator theoretic properties of bilateral composition operator $C_{ph, T}: f ri T circ f circ ph$ on the vector-valued Hardy space $H^p(X)$ for $1 leq p leq +infty$. Compactness and weak compactness of $C_{ph, T}$ on $H^p(X)$ are characterized an...
متن کاملar X iv : m at h / 06 10 07 7 v 1 [ m at h . FA ] 2 O ct 2 00 6 COMPOSITION OPERATORS WITHIN SINGLY GENERATED COMPOSITION C ∗ - ALGEBRAS
Let φ be a linear-fractional self-map of the open unit disk D, not an automorphism, such that φ(ζ) = η for two distinct points ζ, η in the unit circle ∂D. We consider the question of which composition operators lie in C∗(Cφ,K), the unital C∗-algebra generated by the composition operator Cφ and the ideal K of compact operators, acting on the Hardy space H.
متن کاملComposition Operators within Singly Generated Composition C * -algebras
Let φ be a linear-fractional self-map of the open unit disk D, not an automorphism, such that φ(ζ) = η for two distinct points ζ, η in the unit circle ∂D. We consider the question of which composition operators lie in C∗(Cφ,K), the unital C∗-algebra generated by the composition operator Cφ and the ideal K of compact operators, acting on the Hardy space H. This necessitates a companion study of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003